3 A is the point $(1,5)$ and C is the point $(3, p)$.
(i) Find the equation of the line through A which is parallel to the line $2 x+5 y=7$.
(ii) This line also passes through the point C . Find the value of p.

5 The coordinates of the points A, B and C are $(-2,1),(5,2)$ and $(4,9)$ respectively.
(a) Find the coordinates of the midpoint, M, of the line AC.
(b) Show that BM is perpendicular to AC.
(c) (i) Use the result of part (b) to state the mathematical name of the triangle ABC.
(ii) Prove this by another method.

1 (i) Find the gradient of the line, L, whose equation is $3 x+2 y=7$.
(ii) Find the equation of the line which is perpendicular to L and which passes through the point $(3,1)$. [3]

7 The points A and B have coordinates $(3,7)$ and $(5,11)$ respectively.
(i) Find the exact length of AB .
(ii) Find the equation of the circle with diameter AB .

8 Four points have coordinates $\mathrm{A}(-5,-1), \mathrm{B}(0,4), \mathrm{C}(7,3)$ and $\mathrm{D}(2,-2)$.
(i) Using gradients of lines, prove that ABCD is a parallelogram.
(ii) Using lengths of lines, prove further that ABCD is a rhombus.
(iii) Prove that ABCD is not a square.

1 Find the equation of the line which is perpendicular to the line $2 x+3 y=5$ and which passes through the point $(3,4)$.

4 (i) Find the distance between the points $(2,3)$ and (7,9).
(ii) Hence find the equation of the circle with centre $(2,3)$ and passing through the point $(7,9)$.

7 (i) Show that the two lines whose equations are given below are parallel.

$$
\begin{align*}
y & =4-2 x \tag{2}\\
4 x+2 y & =5
\end{align*}
$$

(ii) Find the equation of the line which is perpendicular to these two lines and which passes through the point $(1,6)$.

9 The points A, B and C have coordinates $(-1,1),(5,8)$ and $(8,3)$ respectively.
(i) Show that $\mathrm{AC}=\mathrm{AB}$.
(ii) Write down the coordinates of M , the midpoint of BC .
(iii) Show that the lines BC and AM are perpendicular.
(iv) Find the equation of the line AM.

2 The points A and B have coordinates $(0,8)$ and $(6,0)$ respectively.
(i) Find the equation of the line AB .
(ii) Find the equation of the line perpendicular to AB through its midpoint.

